\qquad
\qquad

Summary of Circular Motion and Gravity

motion in a straight line

$T=$ \qquad time to make 1 revolution

Sometimes you know T without it being stated
Ex. _Earth around sun \qquad
$a=$
$\mathrm{a}_{\mathrm{c}}=$ \qquad centripetal acceleration \qquad

Objects accelerate by changing \qquad or changing \qquad _.

An object that is traveling at a constant speed in a circle is accelerating. Why? \qquad
$\mathrm{F}=$
\square
$\mathrm{F}_{\mathrm{c}}=$ \qquad centripetal force \qquad
You can also make another equation for F_{c} by combining the last 2 equations.

centripetal force- the force needed to keep an object \qquad
centrifugal force- \qquad
\qquad
\qquad

GRAVITY

$\mathrm{F}_{\mathrm{g}}=$
or $\quad \mathrm{w}=\mathrm{mg}$
(Weight is a force!!!!)
$\ldots=$ acceleration due to gravity $\left(\mathrm{m} / \mathrm{s}^{2}\right)$
$\ldots \quad=$ gravitational force (N)

The Universal Law of Gravitation

This equation shows us that everything \qquad everything else.

The force of the attraction depends on the \qquad and the \qquad of the objects

To find the acceleration due to gravity at any distance from any object

$$
\mathrm{F}_{\mathrm{g}}=\mathrm{F}_{\mathrm{g}}
$$

$\mathrm{m}=$ mass of object creating gravity (Earth usually)
$\mathrm{r}=$ distance from CENTER of object

For orbiting objects

In order for an object to orbit, what two forces must equal each other?
$=$

Pendulums:
The \qquad affects the period (T) of a pendulum but \qquad does NOT.
\square

